MKE2FS - Manpage

From Wiki.IT-Arts.net
Revision as of 11:06, 9 November 2024 by Admin (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Quick Example

Create an ext4 file system :

mkfs.ext4 /dev/sdb1

Then label it :

e4label /dev/sdb1 disk-sdb-part1


MKE2FS Manpage

MKE2FS(8)                                                                                  System Manager's Manual                                                                                  MKE2FS(8)

NAME
       mke2fs - create an ext2/ext3/ext4 file system

SYNOPSIS
       mke2fs  [  -c  | -l filename ] [ -b block-size ] [ -C cluster-size ] [ -d root-directory ] [ -D ] [ -g blocks-per-group ] [ -G number-of-groups ] [ -i bytes-per-inode ] [ -I inode-size ] [ -j ] [ -J
       journal-options ] [ -N number-of-inodes ] [ -n ] [ -m reserved-blocks-percentage ] [ -o creator-os ] [ -O [^]feature[,...]  ] [ -q ] [ -r fs-revision-level ] [ -E extended-options ] [ -v ] [ -F ]  [
       -L volume-label ] [ -M last-mounted-directory ] [ -S ] [ -t fs-type ] [ -T usage-type ] [ -U UUID ] [ -V ] [ -e errors-behavior ] [ -z undo_file ] device [ fs-size ]

       mke2fs -O journal_dev [ -b block-size ] [ -L volume-label ] [ -n ] [ -q ] [ -v ] external-journal [ fs-size ]

DESCRIPTION
       mke2fs is used to create an ext2, ext3, or ext4 file system, usually in a disk partition (or file) named by device.

       The  file  system size is specified by fs-size.  If fs-size does not have a suffix, it is interpreted as power-of-two kilobytes, unless the -b blocksize option is specified, in which case fs-size is
       interpreted as the number of blocksize blocks.   If the fs-size is suffixed by 'k', 'm', 'g', 't' (either upper-case or lower-case), then it is interpreted in power-of-two kilobytes, megabytes,  gi‐
       gabytes, terabytes, etc.  If fs-size is omitted, mke2fs will create the file system based on the device size.

       If  mke2fs  is  run as mkfs.XXX (i.e., mkfs.ext2, mkfs.ext3, or mkfs.ext4) the option -t XXX is implied; so mkfs.ext3 will create a file system for use with ext3, mkfs.ext4 will create a file system
       for use with ext4, and so on.

       The defaults of the parameters for the newly created file system, if not overridden by the options listed below, are controlled by the /etc/mke2fs.conf configuration file.   See  the  mke2fs.conf(5)
       manual page for more details.

OPTIONS
       -b block-size
              Specify  the size of blocks in bytes.  Valid block-size values are powers of two from 1024 up to 65536 (however note that the kernel is able to mount only file systems with block-size smaller
              or equal to the system page size - 4k on x86 systems, up to 64k on ppc64 or aarch64 depending on kernel configuration).  If omitted, block-size is heuristically determined by the file  system
              size  and  the expected usage of the file system (see the -T option).  In most common cases, the default block size is 4k. If block-size is preceded by a negative sign ('-'), then mke2fs will
              use heuristics to determine the appropriate block size, with the constraint that the block size will be at least block-size bytes.  This is useful for certain hardware devices  which  require
              that the blocksize be a multiple of 2k.

       -c     Check the device for bad blocks before creating the file system.  If this option is specified twice, then a slower read-write test is used instead of a fast read-only test.

       -C  cluster-size
              Specify the size of cluster in bytes for file systems using the bigalloc feature.  Valid cluster-size values are from 2048 to 256M bytes per cluster.  This can only be specified if the bigal‐
              loc feature is enabled.  (See the ext4 (5) man page for more details about bigalloc.)   The default cluster size if bigalloc is enabled is 16 times the block size.

       -d root-directory
              Copy the contents of the given directory into the root directory of the file system.

       -D     Use direct I/O when writing to the disk.  This avoids mke2fs dirtying a lot of buffer cache memory, which may impact other applications running on a  busy  server.   This  option  will  cause
              mke2fs to run much more slowly, however, so there is a tradeoff to using direct I/O.

       -e error-behavior
              Change  the behavior of the kernel code when errors are detected.  In all cases, a file system error will cause e2fsck(8) to check the file system on the next boot.  error-behavior can be one
              of the following:

                   continue    Continue normal execution.

                   remount-ro  Remount file system read-only.

                   panic       Cause a kernel panic.

       -E extended-options
              Set extended options for the file system.  Extended options are comma separated, and may take an argument using the equals ('=') sign.  The -E option used to be  -R  in  earlier  versions  of
              mke2fs.  The -R option is still accepted for backwards compatibility, but is deprecated.  The following extended options are supported:

                   encoding=encoding-name
                          Enable  the  casefold  feature  in  the super block and set encoding-name as the encoding to be used.  If encoding-name is not specified, the encoding defined in mke2fs.conf(5) is
                          used.

                   encoding_flags=encoding-flags
                          Define parameters for file name character encoding operations.  If a flag is not changed using this parameter, its default value is used.  encoding-flags should be  a  comma-sepa‐
                          rated lists of flags to be enabled.  To disable a flag, add it to the list with the prefix "no".

                          The  only  flag  that can be set right now is strict which means that invalid strings should be rejected by the file system.  In the default configuration, the strict flag is dis‐
                          abled.

                   mmp_update_interval=interval
                          Adjust the initial MMP update interval to interval seconds.  Specifying an interval of 0 means to use the default interval.  The specified interval must be less than 300  seconds.
                          Requires that the mmp feature be enabled.

                   stride=stride-size
                          Configure the file system for a RAID array with stride-size file system blocks. This is the number of blocks read or written to disk before moving to the next disk, which is some‐
                          times referred to as the chunk size.  This mostly affects placement of file system metadata like bitmaps at mke2fs time to avoid placing them on a single disk, which can hurt per‐
                          formance.  It may also be used by the block allocator.

                   stripe_width=stripe-width
                          Configure  the  file system for a RAID array with stripe-width file system blocks per stripe. This is typically stride-size * N, where N is the number of data-bearing disks in the
                          RAID (e.g. for RAID 5 there is one parity disk, so N will be the number of disks in the array minus 1).  This allows the block allocator to prevent read-modify-write of the parity
                          in a RAID stripe if possible when the data is written.

                   offset=offset
                          Create the file system at an offset from the beginning of the device or file.  This can be useful when creating disk images for virtual machines.

                   resize=max-online-resize
                          Reserve enough space so that the block group descriptor table can grow to support a file system that has max-online-resize blocks.

                   lazy_itable_init[= <0 to disable, 1 to enable>]
                          If  enabled  and  the uninit_bg feature is enabled, the inode table will not be fully initialized by mke2fs.  This speeds up file system initialization noticeably, but it requires
                          the kernel to finish initializing the file system in the background when the file system is first mounted.  If the option value is omitted, it defaults to 1 to enable  lazy  inode
                          table zeroing.

                   lazy_journal_init[= <0 to disable, 1 to enable>]
                          If  enabled, the journal inode will not be fully zeroed out by mke2fs.  This speeds up file system initialization noticeably, but carries some small risk if the system crashes be‐
                          fore the journal has been overwritten entirely one time.  If the option value is omitted, it defaults to 1 to enable lazy journal inode zeroing.

                   assume_storage_prezeroed[= <0 to disable, 1 to enable>]
                          If enabled, mke2fs assumes that the storage device has been prezeroed, skips zeroing the journal and inode tables, and annotates the block group flags to signal that the inode ta‐
                          ble has been zeroed.

                   no_copy_xattrs
                          Normally  mke2fs will copy the extended attributes of the files in the directory hierarchy specified via the (optional) -d option.  This will disable the copy and leaves the files
                          in the newly created file system without any extended attributes.

                   num_backup_sb=<0|1|2>
                          If the sparse_super2 file system feature is enabled this option controls whether there will be 0, 1, or 2 backup superblocks created in the file system.

                   packed_meta_blocks[= <0 to disable, 1 to enable>]
                          Place the allocation bitmaps and the inode table at the beginning of the disk.  This option requires that the flex_bg file system feature to be enabled in order for it to have ef‐
                          fect, and will also create the journal at the beginning of the file system.  This option is useful for flash devices that use SLC flash at the beginning of the disk.  It also max‐
                          imizes the range of contiguous data blocks, which can be useful for certain specialized use cases, such as supported Shingled Drives.

                   root_owner[=uid:gid]
                          Specify the numeric user and group ID of the root directory.  If no UID:GID is specified, use the user and group ID of the user running mke2fs.  In mke2fs 1.42 and earlier the UID
                          and GID of the root directory were set by default to the UID and GID of the user running the mke2fs command.  The root_owner= option allows explicitly specifying these values, and
                          avoid side-effects for users that do not expect the contents of the file system to change based on the user running mke2fs.

                   test_fs
                          Set a flag in the file system superblock indicating that it may be mounted using experimental kernel code, such as the ext4dev file system.

                   orphan_file_size=size
                          Set size of the file for tracking unlinked but still open inodes and inodes with truncate in progress. Larger file allows for better scalability, reserving a few blocks per cpu is
                          ideal.

                   discard
                          Attempt  to  discard blocks at mkfs time (discarding blocks initially is useful on solid state devices and sparse / thin-provisioned storage). When the device advertises that dis‐
                          card also zeroes data (any subsequent read after the discard and before write returns zero), then mark all not-yet-zeroed inode tables as zeroed. This significantly speeds up file
                          system initialization. This is set as default.

                   nodiscard
                          Do not attempt to discard blocks at mkfs time.

                   quotatype
                          Specify the which  quota types (usrquota, grpquota, prjquota) which should be enabled in the created file system.  The argument of this extended option should be a colon separated
                          list.  This option has effect only if the quota feature is set.   The default quota types to be initialized if this option is not specified is both user and group quotas.  If  the
                          project feature is enabled that project quotas will be initialized as well.

       -F     Force  mke2fs to create a file system, even if the specified device is not a partition on a block special device, or if other parameters do not make sense.  In order to force mke2fs to create
              a file system even if the file system appears to be in use or is mounted (a truly dangerous thing to do), this option must be specified twice.

       -g blocks-per-group
              Specify the number of blocks in a block group.  There is generally no reason for the user to ever set this parameter, as the default is optimal for the file system.  (For  administrators  who
              are  creating file systems on RAID arrays, it is preferable to use the stride RAID parameter as part of the -E option rather than manipulating the number of blocks per group.)  This option is
              generally used by developers who are developing test cases.

              If the bigalloc feature is enabled, the -g option will specify the number of clusters in a block group.

       -G number-of-groups
              Specify the number of block groups that will be packed together to create a larger virtual block group (or "flex_bg group") in an ext4 file system.  This improves meta-data locality and  per‐
              formance on meta-data heavy workloads.  The number of groups must be a power of 2 and may only be specified if the flex_bg file system feature is enabled.

       -i bytes-per-inode
              Specify  the  bytes/inode  ratio.  mke2fs creates an inode for every bytes-per-inode bytes of space on the disk.  The larger the bytes-per-inode ratio, the fewer inodes will be created.  This
              value generally shouldn't be smaller than the blocksize of the file system, since in that case more inodes would be made than can ever be used.  Be warned that it is not  possible  to  change
              this  ratio  on a file system after it is created, so be careful deciding the correct value for this parameter.  Note that resizing a file system changes the number of inodes to maintain this
              ratio.

       -I inode-size
              Specify the size of each inode in bytes.  The inode-size value must be a power of 2 larger or equal to 128.  The larger the inode-size the more space the inode table will  consume,  and  this
              reduces the usable space in the file system and can also negatively impact performance.  It is not possible to change this value after the file system is created.

              File  systems  with an inode size of 128 bytes do not support timestamps beyond January 19, 2038.  Inodes which are 256 bytes or larger will support extended timestamps, project id's, and the
              ability to store some extended attributes in the inode table for improved performance.

              The default inode size is controlled by the mke2fs.conf(5) file.  In the mke2fs.conf file shipped with e2fsprogs, the default inode size is 256 bytes for most file systems, except  for  small
              file systems where the inode size will be 128 bytes.

       -j     Create  the  file  system with an ext3 journal.  If the -J option is not specified, the default journal parameters will be used to create an appropriately sized journal (given the size of the
              file system) stored within the file system.  Note that you must be using a kernel which has ext3 support in order to actually make use of the journal.

       -J journal-options
              Create the ext3 journal using options specified on the command-line.  Journal options are comma separated, and may take an argument using the equals ('=')  sign.  The  following  journal  op‐
              tions are supported:

                   size=journal-size
                          Create  an  internal  journal (i.e., stored inside the file system) of size journal-size megabytes.  The size of the journal must be at least 1024 file system blocks (i.e., 1MB if
                          using 1k blocks, 4MB if using 4k blocks, etc.)  and may be no more than 10,240,000 file system blocks or half the total file system size (whichever is smaller)

                   fast_commit_size=fast-commit-size
                          Create an additional fast commit journal area of size fast-commit-size kilobytes.  This option is only valid if fast_commit feature is enabled on the file system. If  this  option
                          is not specified and if fast_commit feature is turned on, fast commit area size defaults to journal-size / 64 megabytes. The total size of the journal with fast_commit feature set
                          is journal-size + ( fast-commit-size * 1024) megabytes. The total journal size may be no more than 10,240,000 file system blocks or half the total file system size  (whichever  is
                          smaller).

                   location=journal-location
                          Specify the location of the journal.  The argument journal-location can either be specified as a block number, or if the number has a units suffix (e.g., 'M', 'G', etc.) interpret
                          it as the offset from the beginning of the file system.

                   device=external-journal
                          Attach the file system to the journal block device located on external-journal.  The external journal must already have been created using the command

                          mke2fs -O journal_dev external-journal

                          Note that external-journal must have been created with the same block size as the new file system.  In addition, while there is support for attaching multiple file  systems  to  a
                          single external journal, the Linux kernel and e2fsck(8) do not currently support shared external journals yet.

                          Instead  of  specifying a device name directly, external-journal can also be specified by either LABEL=label or UUID=UUID to locate the external journal by either the volume label
                          or UUID stored in the ext2 superblock at the start of the journal.  Use dumpe2fs(8) to display a journal device's volume label and UUID.  See also the -L option of tune2fs(8).

              Only one of the size or device options can be given for a file system.

       -l filename
              Read the bad blocks list from filename.  Note that the block numbers in the bad block list must be generated using the same block size as used by mke2fs.  As a result, the -c option to mke2fs
              is a much simpler and less error-prone method of checking a disk for bad blocks before formatting it, as mke2fs will automatically pass the correct parameters to the badblocks program.

       -L new-volume-label
              Set the volume label for the file system to new-volume-label.  The maximum length of the volume label is 16 bytes.

       -m reserved-blocks-percentage
              Specify  the percentage of the file system blocks reserved for the super-user.  This avoids fragmentation, and allows root-owned daemons, such as syslogd(8), to continue to function correctly
              after non-privileged processes are prevented from writing to the file system.  The default percentage is 5%.

       -M last-mounted-directory
              Set the last mounted directory for the file system.  This might be useful for the sake of utilities that key off of the last mounted directory to determine where the  file  system  should  be
              mounted.

       -n     Causes  mke2fs to not actually create a file system, but display what it would do if it were to create a file system.  This can be used to determine the location of the backup superblocks for
              a particular file system, so long as the mke2fs parameters that were passed when the file system was originally created are used again.  (With the -n option added, of course!)

       -N number-of-inodes
              Overrides the default calculation of the number of inodes that should be reserved for the file system (which is based on the number of blocks and the bytes-per-inode ratio).  This allows  the
              user to specify the number of desired inodes directly.

       -o creator-os
              Overrides the default value of the "creator operating system" field of the file system.  The creator field is set by default to the name of the OS the mke2fs executable was compiled for.

       -O [^]feature[,...]
              Create  a  file  system with the given features (file system options), overriding the default file system options.  The features that are enabled by default are specified by the base_features
              relation, either in the [defaults] section in the /etc/mke2fs.conf configuration file, or in the [fs_types] subsections for the usage types as specified by the -T option, further modified  by
              the  features relation found in the [fs_types] subsections for the file system and usage types.  See the mke2fs.conf(5) manual page for more details.  The file system type-specific configura‐
              tion setting found in the [fs_types] section will override the global default found in [defaults].

              The file system feature set will be further edited using either the feature set specified by this option, or if this option is not given, by the default_features relation for the file  system
              type being created, or in the [defaults] section of the configuration file.

              The  file  system feature set is comprised of a list of features, separated by commas, that are to be enabled.  To disable a feature, simply prefix the feature name with a caret ('^') charac‐
              ter.  Features with dependencies will not be removed successfully.  The pseudo-file system feature "none" will clear all file system features.

       For more information about the features which can be set, please see
              the manual page ext4(5).

       -q     Quiet execution.  Useful if mke2fs is run in a script.

       -r revision
              Set the file system revision for the new file system.  Note that 1.2 kernels only support revision 0 file systems.  The default is to create revision 1 file systems.

       -S     Write superblock and group descriptors only.  This is an extreme measure to be taken only in the very unlikely case that all of the superblock and backup  superblocks  are  corrupted,  and  a
              last-ditch  recovery method is desired by experienced users.  It causes mke2fs to reinitialize the superblock and group descriptors, while not touching the inode table and the block and inode
              bitmaps.  The e2fsck program should be run immediately after this option is used, and there is no guarantee that any data will be salvageable.  Due to the wide variety of possible options  to
              mke2fs  that affect the on-disk layout, it is critical to specify exactly the same format options, such as blocksize, fs-type, feature flags, and other tunables when using this option, or the
              file system will be further corrupted.  In some cases, such as file systems that have been resized, or have had features enabled after format time, it is impossible to overwrite  all  of  the
              superblocks correctly, and at least some file system corruption will occur.  It is best to run this on a full copy of the file system so other options can be tried if this doesn't work.

       -t fs-type
              Specify  the  file system type (i.e., ext2, ext3, ext4, etc.) that is to be created.  If this option is not specified, mke2fs will pick a default either via how the command was run (for exam‐
              ple, using a name of the form mkfs.ext2, mkfs.ext3, etc.) or via a default as defined by the /etc/mke2fs.conf file.   This option controls which file system options are used by default, based
              on the fstypes configuration stanza in /etc/mke2fs.conf.

              If  the  -O option is used to explicitly add or remove file system options that should be set in the newly created file system, the resulting file system may not be supported by the requested
              fs-type.  (e.g., "mke2fs -t ext3 -O extent /dev/sdXX" will create a file system that is not supported by the ext3 implementation as  found  in  the  Linux  kernel;  and  "mke2fs  -t  ext3  -O
              ^has_journal /dev/hdXX" will create a file system that does not have a journal and hence will not be supported by the ext3 file system code in the Linux kernel.)

       -T usage-type[,...]
              Specify  how  the  file system is going to be used, so that mke2fs can choose optimal file system parameters for that use.  The usage types that are supported are defined in the configuration
              file /etc/mke2fs.conf.  The user may specify one or more usage types using a comma separated list.

              If this option is is not specified, mke2fs will pick a single default usage type based on the size of the file system to be created.  If the file system size is less than 3 megabytes,  mke2fs
              will  use  the  file system type floppy.  If the file system size is greater than or equal to 3 but less than 512 megabytes, mke2fs(8) will use the file system type small.  If the file system
              size is greater than or equal to 4 terabytes but less than 16 terabytes, mke2fs(8) will use the file system type big.  If the file system size is  greater  than  or  equal  to  16  terabytes,
              mke2fs(8) will use the file system type huge.  Otherwise, mke2fs(8) will use the default file system type default.

       -U UUID
              Set   the   universally   unique   identifier   (UUID)   of   the   file   system  to  UUID.   The  format  of  the  UUID  is  a  series  of  hex  digits  separated  by  hyphens,  like  this:
              "c1b9d5a2-f162-11cf-9ece-0020afc76f16".  The UUID parameter may also be one of the following:

                   clear  clear the file system UUID

                   random generate a new randomly-generated UUID

                   time   generate a new time-based UUID

       -v     Verbose execution.

       -V     Print the version number of mke2fs and exit.

       -z undo_file
              Before overwriting a file system block, write the old contents of the block to an undo file.  This undo file can be used with e2undo(8) to restore the old contents of the file  system  should
              something  go  wrong.   If  the  empty  string  is  passed  as  the  undo_file  argument, the undo file will be written to a file named mke2fs-device.e2undo in the directory specified via the
              E2FSPROGS_UNDO_DIR environment variable or the undo_dir directive in the configuration file.

              WARNING: The undo file cannot be used to recover from a power or system crash.

ENVIRONMENT
       MKE2FS_SYNC
              If set to non-zero integer value, its value is used to determine how often sync(2) is called during inode table initialization.

       MKE2FS_CONFIG
              Determines the location of the configuration file (see mke2fs.conf(5)).

       MKE2FS_FIRST_META_BG
              If set to non-zero integer value, its value is used to determine first meta block group. This is mostly for debugging purposes.

       MKE2FS_DEVICE_SECTSIZE
              If set to non-zero integer value, its value is used to determine logical sector size of the device.

       MKE2FS_DEVICE_PHYS_SECTSIZE
              If set to non-zero integer value, its value is used to determine physical sector size of the device.

       MKE2FS_SKIP_CHECK_MSG
              If set, do not show the message of file system automatic check caused by mount count or check interval.

AUTHOR
       This version of mke2fs has been written by Theodore Ts'o <tytso@mit.edu>.

AVAILABILITY
       mke2fs is part of the e2fsprogs package and is available from http://e2fsprogs.sourceforge.net.

SEE ALSO
       mke2fs.conf(5), badblocks(8), dumpe2fs(8), e2fsck(8), tune2fs(8), ext4(5)

E2fsprogs version 1.47.0                                                                        February 2023                                                                                       MKE2FS(8)